๐ŸŽฏ Week 6 Key Concepts

T vs Z Distribution

Use t when ฯƒ unknown

T-distribution has heavier tails, especially for small samples (n < 30)

T-Based CI

xฬ„ ยฑ t(s/โˆšn)

More conservative intervals when population ฯƒ is unknown

One-Sample T-Test

t = (xฬ„-ฮผโ‚€)/(s/โˆšn)

Test if sample mean differs significantly from hypothesized value

Degrees of Freedom

df = n - 1

Smaller df = wider distribution, larger critical values

๐Ÿ“ˆ T vs Z Distribution Comparison

๐Ÿ” Interactive Distribution Comparison

โš™๏ธ Distribution Settings

n = 15 (df = 14)

๐Ÿ“Š Critical Values

Adjust settings to see the comparison!

๐Ÿ“ˆ T vs Z Distribution Curves

๐Ÿ“Š

Distribution comparison will appear here

๐Ÿงฎ One-Sample T-Test Calculator

๐ŸŒพ Wheat Yield T-Test Example

๐Ÿ“Š Sample Data

๐Ÿ“ˆ T-Test Results

Enter sample data to see t-test results!

๐Ÿ“Š T-Test Visualization

๐Ÿ“ˆ

T-test visualization will appear here

๐Ÿ“ Confidence Intervals: T vs Z

๐Ÿ”ฌ CI Comparison Tool

โš™๏ธ Sample Parameters

๐Ÿ“Š Interval Comparison

Adjust parameters to see CI comparison!

๐Ÿ“ˆ Confidence Intervals Visualization

๐Ÿ“Š

Confidence intervals comparison will appear here

๐ŸŒพ Agricultural Treatment Comparison

๐Ÿงช Control vs Fertilizer Treatment

๐ŸŒฑ Control Group

๐ŸŒฟ Fertilizer Treatment

๐Ÿ“Š Treatment Analysis

Enter treatment data to see the analysis!

๐Ÿ“ˆ Treatment Comparison Visualization

๐ŸŒพ

Treatment comparison will appear here

๐ŸŽฏ Practice Quiz

Question 1 of 5

Progress: 0%

๐ŸŽ“ Key Takeaways

๐Ÿ“Š

When to Use T-Distribution

  • โ€ข Population ฯƒ is unknown
  • โ€ข Using sample standard deviation (s)
  • โ€ข Small to moderate sample sizes
  • โ€ข More conservative than z-distribution
๐ŸŽฏ

T-Test Interpretation

  • โ€ข |t| > t-critical โ†’ Reject Hโ‚€
  • โ€ข p-value < ฮฑ โ†’ Significant result
  • โ€ข Consider practical significance
  • โ€ข Check assumptions (normality)
๐ŸŒพ

Agricultural Applications

  • โ€ข Test treatment effectiveness
  • โ€ข Estimate population parameters
  • โ€ข Compare confidence intervals
  • โ€ข Make data-driven decisions